Свойства воды
О.В. Мосин
ВВЕДЕНИЕ.
Вода - наиболее распространенное на Земле вещество. Ее количество достигает 1018 тлнн, и она покрывает приблизительно четыре пятых земной поверхности. Это единственное химическое соединение, которое в природных условиях существует в виде жидкости, твердого вещества (лед) и газа (пары воды). Вода играет жизненно важную роль в промышленности, быту и в лабораторной практике; она совершенно необходима для поддержания жизни. Приблизительно две трети человеческого тела приходятся на долю воды, и многие пищевые продукты состоят преимущественно из воды.
СТРУКТУРА И ФИЗИЧЕСКИЕ СВОЙСТВА ВОДЫ
Древние философы полагали, что вода является одним из четырех первичных элементов природы наряду с землей, воздухом и огнем. Эти представления продолжали существовать и в средние века. В 1781 году Г. Кавендиш показал, что вода образуется при сгорании водорода. Однако лишь в 1860 г. Станислав Канниццаро окончательно установил, что вода имеет формулу Н2О.
Вода ковалентное молекулярное соединение. Молекула воды полярная; угол -104,5; связь O–H ковалентная полярная. Вода является дипольным растворителем (растворяет многие газы, жидкие и твёрдые вещества). В каждой ее молекуле атом кислорода имеет две неподеленные пары электронов. Это объясняет изогнутую структуру молекулы воды с тетраэдрическим углом между связями.
Вода представляет собой прозрачную бесцветную жидкость, обладающую целым рядом аномальных физических свойств. Например, она имеет аномально высокие температуры замерзания и кипения, а также поверхностное натяжение. Ее удельные энтальпии испарения и плавления (в расчете на 1 г) выше, чем почти у всех остальных веществ. Редкой особенностью воды является то, что ее плотность в жидком состоянии при 4°С больше плотности льда. Поэтому лед плавает на поверхности воды.
Эти аномальные свойства воды объясняются существованием в ней водородных связей, которые связывают между собой молекулы как в жидком, так и в твердом состоянии. Вода плохо проводит электрический ток, но становится хорошим проводником, если в ней растворены даже небольшие количества ионных веществ.
УНИВЕРСАЛЬНЫЙ РАСТВОРИТЕЛЬ
Вода широко используется в качестве растворителя в химической технологии, а также в лабораторной практике. Она представляет собой универсальный растворитель, необходимый для протекания биохимических реакций. Дело в том, что вода прекрасно растворяет ионные соединения, а также многие ковалентные соединения. Способность воды хорошо растворять многие вещества обусловлена полярностью ее молекул. Молекула воды обладает сравнительно большим дипольным моментом. Поэтому при растворении в ней ионных веществ молекулы воды ориентируются вокруг ионов, т.е. сольватируют их. Водные растворы ионных веществ являются электролитами.
Растворимость ковалентных соединений в воде зависит от их способности образовывать водородные связи с молекулами воды. Водородные связи-это диполь-дипольные взаимодействия между атомами водорода в молекулах воды и электроотрицательными атомами молекул растворенного вещества. Простые ковалентные соединения, как, например, диоксид серы, аммиак и хлорводород, растворяются в воде. Кислород, азот и диоксид углерода плохо растворяются в воде. Многие органические соединения, содержащие атомы электроотрицательных элементов, как, например, кислорода или азота, растворимы в воде. В качестве примера укажем этанол С2Н5ОН, уксусную кислоту СН3СООН, сахар С12Н22О6 и диэтиламин (C2H5)2NH. Присутствие в воде нелетучих растворенных веществ, например хлорида натрия или сахара, понижает давление пара и температуру замерзания воды, но повышает ее температуру кипения.
ХИМИЧЕСКИЕ РЕАКЦИИ С УЧАСТИЕМ ВОДЫ
Вода участвует во множестве химических реакций в качестве растворителя, реагента либо продукта. Выше мы уже обсудили свойства воды как растворителя. Вода является продуктом многих неорганических и органических химический реакций. Например, она образуется при нейтрализации кислот и оснований. В органической химии многие реакции конденсации сопровождаются отщеплением (элиминированием) молекул воды. Существует четыре типа важнейших химических реакций, в которых вода участвует в качестве реагента.
Кислотно-основные реакции. Вода обладает амфотерными свойствами. Это означает, что она может выступать как в роли кислоты, так и в роли основания. Ее амфотерные свойства обусловлены способностью воды к самоионизации: 2Н2О(ж.) = Н3О+(водн.) + ОН-(водн.) Это позволяет воде быть, с одной стороны, акцептором протона: НСl + Н2О = Н3О+ + Сl а с другой стороны-донором протона: NH3 + Н2О = NH4 + ОН-
ОКИСЛЕНИЕ-ВОССТАНОВЛЕНИЕ
Вода обладает способностью выступать как в роли окислителя, так и в роли восстановителя. Она окисляет металлы, расположенные в электрохимическом ряду напряжений выше олова. Например, в реакции между натрием и водой происходит следующий окислительный процесс:
Nа(тв.) = Na+(водн.) + е- В этой реакции вода играет роль восстановителя: 2Н2О(ж.) + 2е- = 2ОН-(водн.) + Н2(г.) Другим примером подобной реакции является взаимодействие между магнием и водяным паром: Мg(тв.) + Н20(г.) = МgО(тв.) + Н2(г.) Вода действует как окислитель в процессах коррозии. Например, один из процессов, протекающих при ржавлении железа, заключается в следующем: 2Н2О + О2 + 4е- = 4ОН- Вода является важным восстановителем в биохимических процессах. Например, некоторые стадии цикла лимонной кислоты включают окисление воды: 2Н2О = О2 + 4Н+ + 4е-
Этот процесс электронного переноса имеет также большое значение в восстановлении органических фосфатных соединений при фотосинтезе. Цикл лимонной кислоты и фотосинтез представляют собой сложные процессы, включающие ряд последовательно протекающих химических реакций. В обоих случаях процессы электронного переноса, происходящие в них, еще не полностью выяснены.
ГИДРАТАЦИЯ.
Молекулы воды способны сольватировать как катионы, так и анионы. Этот процесс называется гидратацией. Гидратная вода в кристаллах солей называется кристаллизационной водой. Молекулы воды обычно связаны с сольватируемым ими катионом координационными связями.
ГИДРОЛИЗ.
Гидролиз представляет собой реакцию какого-либо иона или молекулы с водой. Примером реакций этого типа может быть реакция между хлороводородом и водой с образованием соляной кислоты. Другой пример-гидролиз хлорида железа(III): FеС13(водн.) + ЗН2О(ж.) = Fе(ОН)3(тв.) + ЗН+(водн.) + ЗСl(водн.) Гидролиз органических соединений также широко распространен. Один из наиболее известных примеров-гидролиз этилацетата (этилатаноата, этилового эфира уксусной кислоты): СН3СООС2Н5 + Н2О = СН3СООН + С2Н5ОН Этилацетат Уксусная Этанол кислота
ИСТОЧНИКИ ПРЕСНОЙ ВОДЫ И ЕЕ ИСПОЛЬЗОВАНИЕ
Из 1018 т воды на Земле на пресную воду приходятся всего лишь 3%, из которых 80% недоступны для использования, поскольку представляют собой лед, образующий полярные шапки. Пресная вода оказывается доступной человеку в результате участия в гидрологическом цикле, или круговороте воды в природе, который схематически изображен на рисунке. Ежегодно в круговорот воды, в результате ее испарения и выпадения осадков в виде дождя или снега, вовлекается приблизительно 500 000 км3 воды. По теоретическим подсчетам максимальное количество пресной воды, доступное для использования, составляет приблизительно 40 000 км3 в год. Речь идет о той воде, которая стекает с поверхности земли в моря и океаны (так называемый сток).
Использование пресной воды принято подразделять на многократное использование и безвозвратное расходование. В соответствии с этим пресную воду также иногда подразделяют на используемую многократно и расходуемую безвозвратно.
Многократное использование воды может быть проиллюстрировано на таких примерах, как навигация, рыбоводство и получение гидроэлектроэнергии.
Безвозвратно расходуемая пресная вода становится уже недоступной для повторного использования. К ней относится пресная вода, которая после употребления оказалась потерянной в результате испарения (в том числе листьями растений); вода, вошедшая в состав продуктов, а также вода стока, достигшая моря (океана) и смешавшаяся с соленой водой. Безвозвратный расход пресной воды во всем мире составляет от 2500 до 3000 км3 в год, причем из этого количества приблизительно 10% расходуется в бытовых целях, 8% в промышленности, а подавляющее большинство-82% идет на ирригацию в сельском хозяйстве.
РАСХОД ВОДЫ
Расход воды в бытовых целях. В бытовых целях вода расходуется для питья, приготовления пищи, стирки, мытья, смыва нечистот в канализацию и поливки садов и улиц. В Европе средний расход воды в бытовых целях на душу населения составляет приблизительно 250 л в день. Это приблизительно столько же, как и во времена Римской империи. На бытовые цели расходуется приблизительно 10% всей воды, потребляемой человечеством.
Расход воды в промышленных целях.
Свыше 85% воды, используемой в промышленных целях, расходуется в процессах охлаждения. Остальная часть расходуется в процессах мойки, промывки газов, для гидротранспорта и в качестве растворителя. Приблизительно полмиллиона литров воды расходуется на выпуск каждого легкового автомобиля; это количество включает как безвозвратно расходуемую воду, так и воду повторного использования. В промышленных целях расходуется приблизительно 8% всей используемой в мире воды.
Расход воды в сельском хозяйстве. На сельское хозяйство приходится 82% расхода воды во всем мире. Эта вода используется для ирригации. Для выращивания одной тонны хлопка необходимо 11 000 миллионов литров воды. Для выращивания спелой тыквы требуется 150 л воды.
Расход воды для получения гидроэнергии.
Свыше 50% всего притока воды в Великобритании расходуется на электростанциях. Воду используют на гидроэлектростанциях, а также на тепловых электростанциях-для создания пара, вращающего турбины, и в целях охлаждения. Хотя электростанции расходуют огромное количество воды, она используется практически без потерь, в замкнутом цикле. Согласно имеющимся оценкам, в середине двадцать первого столетия уровень потребления воды во всем мире должен превысить ее естественное поступление. Чтобы решить эту проблему, разрабатываются различные способы получения пресной воды, которые описаны ниже.
Увеличение притока пресной воды.
Большая часть воды, стекающей с поверхности земли в океаны, пропадает бесполезно для нужд человека. Строительство резервуаров и бурение скважин для извлечения грунтовых вод повышает количество воды, используемой человеком до того, как она попадает в океаны. В жаркую погоду большие количества воды теряются из озер и резервуаров в результате испарения. Этому можно воспрепятствовать, покрывая поверхность воды тонкой пленкой спирта гексадеканола-1.
Использование морской воды.
Пресную воду можно получать из морской воды обессоливанием в результате вакуумной перегонки в выпарных аппараратах.
Пресную воду можно получать также с помощью электродиализа из солёной воды. Такая вода находится в устьях рек; она имеет промежуточную соленость между пресной речной и соленой морской водой.
В настоящее время во всем мире действует свыше 2000 заводов по опреснению воды. Для обессоливания воды используются не только методы вакуумной перегонки и электродиализа, но также методы вымораживания, ионного обмена и обратного осмоса.
Качество воды
Поскольку вода-хороший растворитель, она редко встречается в абсолютно чистом виде. Пригодность воды для питья и наполнения плавательных бассейнов зависит от ее качества. В таблице указаны некоторые характеристики, которыми определяется качество воды.
Таблица. Некоторые характеристики, определяющие качество воды
Прозрачность Наличие растворенных неорганических веществ, например нитратов, хлоридов, железа
Температура Наличие растворенных органических веществ, например фенолов
Вкус Наличие микроорганизмов, например бактерий
Запах Наличие флоры и фауны
pН -
Электропроводность -
Жесткость -
Водопроводная вода в регионах с высокой плотностью населения часто представляет собой рециклированную воду (т.е. очищенную воду повторного использования). Хотя рециклировавная вода совершенно безопасна для питья, некоторые люди находят перспективу повторного использования неприятной. Они предпочитают пить натуральную, в том числе газированную, воду из бутылок.
Наличие в воде микроорганизмов определяется в результате измерения ее биохимической потребности в кислороде (БПК). С этой целью определяют содержание кислорода в воде до и после выдерживания ее в темноте в течение 5 сут при температуре 20°С. БПК измеряется в мг/дм3. БПК обычно рассматривается как мера загрязнения воды. Если загрязняющие органические вещества сбрасываются в воду, в ней начинается их естественная очистка. Она происходит в результате действия определенных микроорганизмов, которые используют растворенный в воде кислород для окисления загрязняющих веществ. Считается, что в зависимости от степени загрязненности воды БПК имеют следующие значения:
Степень загрязнения воды БПК, мг/дм3
Практически чистая 30
Слабое загрязнение 30-80
Сильное загрязнение >80
Загрязнение воды
Загрязнение воды-это понижение ее качества в результате попадания в реки, ручьи, озера, моря и океаны различных физических, химических или биологических веществ. Загрязнение воды имеет много причин.
Сточные воды
Промышленные стоки, содержащие неорганические и органические отходы, нередко спускаются в реки и моря. Ежегодно в водные источники попадают тысячи химических веществ, действие которых на окружающую среду заранее не известно. Сотни из этих веществ представляют собой новые соединения. Хотя промышленные стоки во многих случаях подвергаются предварительной очистке, они все-таки содержат токсичные вещества, которые трудно обнаружить.
Бытовые сточные воды, содержащие, например, синтетические моющие средства, в конце концов попадают в реки и моря. Удобрения, смываемые с поверхности почвы, попадают в водостоки, ведущие к озерам и морям. Все эти причины приводят к сильному загрязнению воды, особенно в замкнутых бассейнах-озерах и прудах.
Твердые отходы.
Если в воде находится большое количество взвешенных твердых веществ, они делают ее непрозрачной для солнечного света и тем самым препятствуют процессу фотосинтеза в водных бассейнах. Это в свою очередь вызывает нарушения в цепи питания в таких бассейнах. Кроме того, твердые отходы вызывают заиливание рек и судоходных каналов, что приводит к необходимости частого проведения дноуглубительных работ.
Эвтрофикация.
В промышленных и сельскохозяйственных сточных водах, которые попадают в водные источники, велико содержание нитратов и фосфатов. Это приводит к пересыщению удобряющими веществами замкнутых водоемов и вызывает в них усиленный рост простейших микроорганизмов-водорослей. Особенно сильно разрастается сине-зеленая водоросль. Но, к сожалению, она несъедобна для большинства видов рыб. Разрастание водорослей приводит к поглощению из воды большего количества кислорода, чем может естественно образовываться в ней. В результате происходит увеличение ВПК такой воды. Попадание в воду биологических отходов, например древесной целлюлозы или необработанных канализационных вод, также приводит к повышению БПК. Другие растения и живые существа не могут выжить в такой среде. Однако в ней сильно размножаются микроорганизмы, способные разлагать мертвые растительные и животные ткани. Эти микроорганизмы поглощают еще больше кислорода и образуют еще больше нитратов и фосфатов. Постепенно в таком водоеме значительно уменьшается число видов растений и животных. Наиболее важными жертвами происходящего процесса оказываются рыбы. В конце концов, уменьшение концентрации кислорода в результате разрастания водорослей и микроорганизмов, разлагающих мертвые ткани, приводит к старению озер и их заболачиванию. Этот процесс называется эвтрофикацией.
Классическим примером эвтрофикации является озеро Эри в США. За 25 лет содержание азота в этом озере повысилось на 50%, а содержание фосфора-на 500%. Причиной послужило главным образом попадание в озеро бытовых сточных вод, содержащих синтетические моющие средства. Синтетические моющие средства содержат много фосфатов.
Очистка сточных вод не дает необходимого эффекта, поскольку позволяет удалять из воды только твердые вещества и лишь небольшую долю растворенных в ней питательных веществ.
Токсичность неорганических отходов.
Сброс промышленных сточных вод в реки и моря приводит к повышению в них концентрации токсичных ионов тяжелых металлов, например кадмия, ртути и свинца. Существенная их часть поглощается или адсорбируется определенными веществами, и это иногда называют процессом самоочищения. Однако в замкнутых бассейнах тяжелые металлы могут достигать опасно высоких уровней.
Наиболее известный случай такого рода произошел в заливе Минамата в Японии. В этот залив сбрасывались промышленные сточные воды, содержащие ацетат метил-ртути. В результате ртуть стала попадать в цепь питания. Она поглощалась водорослями, которые поедали моллюски; моллюсками питались рыбы, а рыба употреблялась в пищу местным населением. Содержание ртути в рыбе оказалось настолько высоким, что это привело к появлению детей с врожденными уродствами и к смертельным случаям. Это заболевание получило название болезни Минамата.
Большую озабоченность вызывает также повышение уровня нитратов, наблюдаемое в питьевой воде. Высказывается мнение, что высокое содержание нитратов в воде может приводить к возникновению рака желудка и являться причиной повышенной детской смертности.
Микробиологическая загрязненность воды.
По данным Международной организации труда, 70% населения земного шара пользуется некачественной водой. Эта проблема особенно остро стоит в развивающихся странах. Приблизительно 90% всех сельских жителей постоянно пользуются для питья и купания загрязненной водой. По оценкам Всемирной организации здравоохранения 80% заболеваний в мире обусловлены недостаточным качеством и антисанитарным состоянием воды. Из-за этого возникают такие заболевания, как холера, тиф, малярия, паразитарный цирроз (глистное заболевание) и проказа. От заболеваний, связанных с антисанитарным состоянием воды, на земном шаре страдает около 500 млн. людей.
Однако проблема загрязненности воды и ее антисанитарного состояния не ограничивается развивающимися странами. Четвертая часть всего Средиземноморского побережья считается опасно загрязненной. Согласно отчету о загрязнении Средиземного моря, опубликованному в 1983 г. в рамках Программы охраны окружающей среды ООН, употребление в пищу выловленных там моллюсков и омаров небезопасно для здоровья. В этом регионе распространены тиф, паратиф, дизентерия, полиомиелит, вирусный гепатит и пищевые отравления, периодически возникают вспышки холеры. Большинство этих заболеваний вызывается сбросом в море неочищенных сточных вод. По имеющимся оценкам, 85% отходов из 120 прибрежных городов сбрасывается в Средиземное море, в котором купаются и ловят рыбу отдыхающие и местные жители. Между Барселоной и Генуей на каждую милю береговой линии приходится приблизительно 200 тонн сбрасываемых отходов в год.
Пестициды
Наиболее токсичными пестицидами являются галогенопроизводные углеводородов, например ДДТ и полихлорированные бифенилы. Хотя ДДТ запрещен к применению уже во многих странах, в иных странах он еще продолжает применяться, и приблизительно 25% используемого количества этого вещества достигает моря. К сожалению, эти галогенопроизводные углеводородов химически устойчивы и не разлагаются микроорганизмами. Поэтому они накапливаются в цепи питания. ДДТ может уничтожать все живое в масштабе целых речных бассейнов; он также препятствует размножению птиц.
Утечка нефти
Только в США ежегодно происходит приблизительно 13000 случаев утечки нефти. В морскую воду ежегодно попадает до 12 млн. т нефти. В Великобритании ежегодно выливается в канализацию свыше 1 млн. т использованного машинного масла.
Нефть, пролитая в морскую воду, оказывает много неблагоприятных воздействий на жизнь моря. Прежде всего гибнут птицы-тонут, перегреваются на солнце или лишаются пищи. Нефть ослепляет живущих в воде животных-тюленей, нерпу. Она уменьшает проникнование света в замкнутые водоемы и может повышать температуру воды. Это особенно губительно для организмов, способных существовать только в ограниченном интервале температур. Нефть содержит токсичные компоненты, например ароматические углеводороды, которые губительно действуют на некоторые формы водной жизни даже в таких концентрациях, как несколько миллионных долей.
Кислотные дожди
Кислотным является любой дождь, однако этот термин применим только в том случае, если рН дождевой воды меньше 5.0. В ФРГ, Скандинавии и Северной Америке случались дожди, в которых рН опускался до 4,0. Кислотные дожди возникают в результате попадания в атмосферу отработанных газов, выпускаемых металлургическими предприятиями, тепловыми электростанциями, нефтеперерабатывающими заводами, а также другими промышленными предприятиями и автомобильным транспортом. Эти газы содержат оксиды серы и азота, которые соединяются с влагой и кислородом воздуха и образуют серную и азотную кислоты. Затем эти кислоты выпадают на землю-иногда на расстоянии многих сотен километров от источника загрязнения атмосферы. В таких странах, как Канада, США, ФРГ тысячи рек и озер остались без растительности и рыбы. Дело усложняется тем, что вода с низким рН способна выщелачивать (т. е. растворять) из грунта токсичные минералы, в том числе содержащие алюминий и такие тяжелые металлы, как кадмий и ртуть. Эти вещества малорастворимы в нейтральной воде и в обычных условиях не представляют опасности.
Как диоксид серы, так и диоксид азота могут быть удалены из отработанных газов, выпускаемых промышленными предприятиями, путем промывки, но их практически полное удаление обходится очень дорого. В настоящее время во многих промышленно развитых странах вводится или ужесточается законодательство, обеспечивающее снижение содержания диоксида серы и диоксида азота в выпускаемых газах до более приемлемого уровня.
Другие формы загрязнения воды
К ним относятся радиоактивное и тепловое загрязнения. Главным источником радиоактивного загрязнения моря являются слабоактивные отходы, удаляемые с атомных электростанций. Одной из наиболее важных проблем, возникающих в связи с этим загрязнением, является то, что морские организмы, например водоросли, накапливают, или концентрируют, радиоактивные изотопы.
Тепловое загрязнение воды вызывается тепловыми или атомными электростанциями. Тепловое загрязнение вносится в окружающие водоемы отработанной охлаждающей водой. В результате повышение температуры воды в этих водоемах приводит к ускорению в них некоторых биохимических процессов, а также к уменьшению содержания кислорода, растворенного в воде. Это вызывает быстрые и нередко очень существенные изменения в биологической среде поблизости от электростанций. Происходит нарушение тонко сбалансированных циклов размножения различных организмов. В условиях теплового загрязнения, как правило, наблюдается сильное разрастание водорослей, но вымирание других живущих в воде организмов.
ОЧИСТКА И ПОДГОТОВКА ВОДЫ
Для использования воды из рек, ручьев, озер и других источников в питьевых и промышленных целях ее сначала необходимо подвергнуть очистке и привести в соответствие с требованиями существующих стандартов на питьевую воду. Эта подготовка воды осуществляется с помощью целого ряда физических и химических процессов.
ФИЗИЧЕСКИЕ ПРОЦЕССЫ ВОДООЧИСТКИ И ВОДОПОДГОТОВКИ
Решечение. Первая стадия водоочистки заключается в удалении из воды больших плавающих предметов и взвешенного мусора. На последующих стадиях обработки воды используются более тонкие решета, позволяющие удалить из нее мелкий взвешенный материал.
Аэрирование.Аэрирование воды может осуществляться разными способами, например в водопадных каскадах. Этот процесс приводит к удалению из воды диоксида углерода, сероводорода и летучих масел, которые могут придавать воде какой-либо вкус или запах. При аэрировании также происходит окисление растворимых в воде ионов железа и марганца.
Флоккуляция. Этот процесс включает осторожное взбалтывание воды, приводящее к конгломерации мелких частиц с образованием более крупных, быстро оседающих на дно.
Седиментация.В этом процессе происходит удаление взвешенных в воде частиц в результате их оседания на дно.
Фильтрование.В этом процессе происходит удаление из воды мелкого взвешенного материала в результате ее пропускания через слой песка (чистого или смешанного с молотым древесным углем), который находится на подложке из гравия.
Химические процессы водоподготовки
Химическая подготовка водыпроизводится по-разному, в зависимости от качества воды, забираемой из реки или другого резервуара. Ниже указаны наиболее употребительные формы химической подготовки воды.
Коагуляция. Для коагуляции взвешенных в воде мелких и коллоидных частиц в нее добавляют специальные коагулянты, под действием которых в воде образуются легкие взвеси. Они характеризуются достаточными размерами частиц и плотностью, чтобы их можно было удалить седиментацией. Для удаления щелочных веществ, содержащихся в воде, обычно используются такие коагулянты, как алюминат натрия и сульфат алюминия.
Дезинфекция. Для разрушения микроорганизмов, содержащихся в воде, ее дезинфицируют, как правило, хлором. Хлорирование обычно является последней стадией водоподготовки.
Умягчение воды. В этом процессе устраняется жесткость воды, вызываемая растворенными в ней солями кальция и магния. С этой целью на водопроводных станциях в воду обычно добавляют гидроксид кальция либо карбонат натрия. Для умягчения воды могут использоваться также ионообменные смолы.
Адсорбция. Адсорбцией называется поглощение одного вещества поверхностью другого вещества. В процессе водоподготовки для удаления из воды органических соединений их адсорбируют на активированном угле. Некоторые органические соединения не удается удалить обычными процессами водоподготовки.
Окисление. Для удаления из воды некоторых нежелательных веществ их можно окислить, превратив при этом в менее вредные формы. Например, окисление озоном позволяет превратить содержащиеся в воде цианиды в цианаты.
Обессоливание.
ОЧИСТКА БЫТОВЫХ И ПРОМЫШЛЕННЫХ СТОЧНЫХ ВОД
Очистка бытовых и промышленных сточных вод осуществляется в три стадии.
Первичная очистка. Она включает решечение воды с целью извлечения из нее больших объектов и удаления взвешенного материала.
Вторичная очистка. На этой стадии осуществляется разложение содержащихся в сточных водах органических веществ под действием микроорганизмов. Это биоразложение органических веществ усиливается в результате продувания воздуха через отстойники.
Ил, образующийся при первичной и вторичной очистке, выбрасывают в море, используют для заполнения выработанных каменоломен и при проведении мелиорационных работ либо, поскольку он богат азотом и фосфором, применяют в сельском хозяйстве для удобрения луговых земель. Этот ил можно также использовать в качестве биомассы для получения биогаза. В результате такого процесса объем ила уменьшается вдвое, а то, что он представляет собой дешевое топливо, значительно снижает стоимость проведения очистных работ.
Третичная очистка. Эта стадия включает биологическую, химическую и физическую обработку сточных вод, при которой из них удаляют:
питательные вещества для растений, например фосфаты, чтобы воспрепятствовать излишнему росту водорослей в воде;
промышленные неорганические загрязняющие вещества, например растворенные ионы тяжелых металлов;
бионеразложимые органические соединения, например галогензамещенные углеводороды, используемые в производстве пестицидов.
Третичная очистка позволяет довести сточные воды до такого уровня чистоты, что они удовлетворяют стандартам на питьевую воду. После полной очистки бытовых сточных вод их обычно возвращают в реки или спускают в моря. Согласно существующим в Великобритании стандартам, очищенные бытовые сточные воды должны иметь ВПК меньше 20 мг/дм3 и содержать не более 30 мг/дм3 взвешенных твердых веществ.
Источники:
М. Фримантл. Химия в действии. Москва, Мир, 1991.